8 research outputs found

    Distributed reflection denial of service attack: A critical review

    Get PDF
    As the world becomes increasingly connected and the number of users grows exponentially and “things” go online, the prospect of cyberspace becoming a significant target for cybercriminals is a reality. Any host or device that is exposed on the internet is a prime target for cyberattacks. A denial-of-service (DoS) attack is accountable for the majority of these cyberattacks. Although various solutions have been proposed by researchers to mitigate this issue, cybercriminals always adapt their attack approach to circumvent countermeasures. One of the modified DoS attacks is known as distributed reflection denial-of-service attack (DRDoS). This type of attack is considered to be a more severe variant of the DoS attack and can be conducted in transmission control protocol (TCP) and user datagram protocol (UDP). However, this attack is not effective in the TCP protocol due to the three-way handshake approach that prevents this type of attack from passing through the network layer to the upper layers in the network stack. On the other hand, UDP is a connectionless protocol, so most of these DRDoS attacks pass through UDP. This study aims to examine and identify the differences between TCP-based and UDP-based DRDoS attacks

    A Novel Multi-Attribute Authority Based Encryption for Controlling Access to Cloud Data

    Get PDF
    Cloud computing has changed the way IT department are working with respect to outsourcing data and having controlled access to the data. In the new computing paradigm that supports on-demand services, the storage service became an attractive service for many cloud users. When data is outsourced to cloud, there is an issue of giving controlled access to the cloud data. Many schemes came into existence. Some of the schemes focus on auditing, provable data possession and proof of irretrievability. Some other schemes threw light into the access control on the cloud data. While giving privileges to accessing data attribute based encryption has achieved significant fine-grained control over the data. In this paper we propose a methodology that can allow controlled access to cloud data with multi-attribute authority based encryption. The multi-attribute based approach is used to make the scheme robust. Moreover the proposed approach is aimed at prevention of identity leakage and also achieves anonymity as well. We built a prototype application that demonstrates the proof of concept. The empirical results revealed that the proposed method improves access control significantly

    A new proactive feature selection model based on the enhanced optimization algorithms to detect DRDoS attacks

    Get PDF
    Cyberattacks have grown steadily over the last few years. The distributed reflection denial of service (DRDoS) attack has been rising, a new variant of distributed denial of service (DDoS) attack. DRDoS attacks are more difficult to mitigate due to the dynamics and the attack strategy of this type of attack. The number of features influences the performance of the intrusion detection system by investigating the behavior of traffic. Therefore, the feature selection model improves the accuracy of the detection mechanism also reduces the time of detection by reducing the number of features. The proposed model aims to detect DRDoS attacks based on the feature selection model, and this model is called a proactive feature selection model proactive feature selection (PFS). This model uses a nature-inspired optimization algorithm for the feature subset selection. Three machine learning algorithms, i.e., k-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM), were evaluated as the potential classifier for evaluating the selected features. We have used the CICDDoS2019 dataset for evaluation purposes. The performance of each classifier is compared to previous models. The results indicate that the suggested model works better than the current approaches providing a higher detection rate (DR), a low false-positive rate (FPR), and increased accuracy detection (DA). The PFS model shows better accuracy to detect DRDoS attacks with 89.59%

    A Comprehensive Review of DNS-based Distributed Reflection Denial of Service (DRDoS) Attacks: State-of-the-Art

    No full text
    Cyberattacks significantly impact the services based on the internet that is used in our daily lives. Any disruption will make it extremely difficult for us to carry out our daily activities. Cyberattacks will disrupt online services, exploit vulnerabilities to breach databases and servers, and so on. Various systems and services contribute to the Internet’s seamless functionality. The Domain Name System (DNS) is one of the most important services. DNS is used to resolve domain names into machine-readable IP addresses. DNS, like many other Internet services, is vulnerable to cyber-attacks. While DNS faces a slew of threats, one in particular appears to stand out. DNS is vulnerable to a variety of distributed denial-of-service attacks. The distributed reflection denial of service (DRDoS) attack, a flooding attack against DNS servers that renders them unavailable, disrupting domain name resolution activities, is one of the most common variants. DRDoS attacks have been on the rise in recent years. DNS lookup outages would significantly impact our online activities in the world of ultra-connectivity because they are typically the first step in establishing a connection with a server. The purpose of this paper is to present a state-of-the-art review of DRDoS attack detection and mitigation algorithms as well as the datasets on which these algorithms operate. Finally, we discussed each of these algorithms' relative merits and demerits

    Malware Detection Using Deep Learning and Correlation-Based Feature Selection

    No full text
    Malware is one of the most frequent cyberattacks, with its prevalence growing daily across the network. Malware traffic is always asymmetrical compared to benign traffic, which is always symmetrical. Fortunately, there are many artificial intelligence techniques that can be used to detect malware and distinguish it from normal activities. However, the problem of dealing with large and high-dimensional data has not been addressed enough. In this paper, a high-performance malware detection system using deep learning and feature selection methodologies is introduced. Two different malware datasets are used to detect malware and differentiate it from benign activities. The datasets are preprocessed, and then correlation-based feature selection is applied to produce different feature-selected datasets. The dense and LSTM-based deep learning models are then trained using these different versions of feature-selected datasets. The trained models are then evaluated using many performance metrics (accuracy, precision, recall, and F1-score). The results indicate that some feature-selected scenarios preserve almost the same original dataset performance. The different nature of the used datasets shows different levels of performance changes. For the first dataset, the feature reduction ratios range from 18.18% to 42.42%, with performance degradation of 0.07% to 5.84%, respectively. The second dataset reduction rate is between 81.77% and 93.5%, with performance degradation of 3.79% and 9.44%, respectively

    Dynamic Clustering Strategies Boosting Deep Learning in Olive Leaf Disease Diagnosis

    No full text
    Artificial intelligence has many applications in various industries, including agriculture. It can help overcome challenges by providing efficient solutions, especially in the early stages of development. When working with tree leaves to identify the type of disease, diseases often show up through changes in leaf color. Therefore, it is crucial to improve the color brightness before using them in intelligent agricultural systems. Color improvement should achieve a balance where no new colors appear, as this could interfere with accurate identification and diagnosis of the disease. This is considered one of the challenges in this field. This work proposes an effective model for olive disease diagnosis, consisting of five modules: image enhancement, feature extraction, clustering, and deep neural network. In image enhancement, noise reduction, balanced colors, and CLAHE are applied to LAB color space channels to improve image quality and visual stimulus. In feature extraction, raw images of olive leaves are processed through triple convolutional layers, max pooling operations, and flattening in the CNN convolutional phase. The classification process starts by dividing the data into clusters based on density, followed by the use of a deep neural network. The proposed model was tested on over 3200 olive leaf images and compared with two deep learning algorithms (VGG16 and Alexnet). The results of accuracy and loss rate show that the proposed model achieves (98%, 0.193), while VGG16 and Alexnet reach (96%, 0.432) and (95%, 1.74), respectively. The proposed model demonstrates a robust and effective approach for olive disease diagnosis that combines image enhancement techniques and deep learning-based classification to achieve accurate and reliable results

    A Hybrid Cracked Tiers Detection System Based on Adaptive Correlation Features Selection and Deep Belief Neural Networks

    No full text
    Tire defects are crucial for safe driving. Specialized experts or expensive tools such as stereo depth cameras and depth gages are usually used to investigate these defects. In image processing, feature extraction, reduction, and classification are presented as three challenging and symmetric ways to affect the performance of machine learning models. This paper proposes a hybrid system for cracked tire detection based on the adaptive selection of correlation features and deep belief neural networks. The proposed system has three steps: feature extraction, selection, and classification. First, the oriented gradient histogram extracts features from the tire images. Second, the proposed adaptive correlation feature selection selects important features with a threshold value adapted to the nature of the images. The last step of the system is to predict the image category based on the deep belief neural networks technique. The proposed model is tested and evaluated using real images of cracked and normal tires. The experimental results show that the proposed solution performs better than the current studies in effectively classifying tire defect images. The proposed hybrid cracked tire detection system based on adaptive correlation feature selection and Deep Belief Neural Networks’ performance provided better classification accuracy (88.90%) than that of Belief Neural Networks (81.6%) and Convolution Neural Networks (85.59%)

    A Hybrid Cracked Tiers Detection System Based on Adaptive Correlation Features Selection and Deep Belief Neural Networks

    No full text
    Tire defects are crucial for safe driving. Specialized experts or expensive tools such as stereo depth cameras and depth gages are usually used to investigate these defects. In image processing, feature extraction, reduction, and classification are presented as three challenging and symmetric ways to affect the performance of machine learning models. This paper proposes a hybrid system for cracked tire detection based on the adaptive selection of correlation features and deep belief neural networks. The proposed system has three steps: feature extraction, selection, and classification. First, the oriented gradient histogram extracts features from the tire images. Second, the proposed adaptive correlation feature selection selects important features with a threshold value adapted to the nature of the images. The last step of the system is to predict the image category based on the deep belief neural networks technique. The proposed model is tested and evaluated using real images of cracked and normal tires. The experimental results show that the proposed solution performs better than the current studies in effectively classifying tire defect images. The proposed hybrid cracked tire detection system based on adaptive correlation feature selection and Deep Belief Neural Networks’ performance provided better classification accuracy (88.90%) than that of Belief Neural Networks (81.6%) and Convolution Neural Networks (85.59%)
    corecore